000 02001nam a22002417a 4500
003 NU
005 20250110163453.0
008 250110b ph ||||| |||| 00| 0 eng d
020 _a9781387907946
_c(paperback)
040 _aNU FAIRVIEW
_cNU FAIRVIEW
050 _aGC QA 861 K56 2022
100 _aKnopp, Dave
_eauthor.
245 _aAn effective rigid body math model /
_cDave Knopp
250 _aFirst Edition.
260 _aLas Vegas, NV :
_bDave Knopp,
_cc2022.
300 _a108 pages :
_c23 cm.
504 _aInclude bibliographical refences.
505 _aPart 1 : Chapter 1 : Preface. -- Chapter 2 : Introduction. -- Chapter 3 : Preliminaries and context. -- Part 2 : Rigid body transformations: Static scenarios. -- Chapter 4 : State. -- Chapter 5 : Transformation components. -- Chapter 6 : Full rigid body transformation. -- Part 3 : Rigid body transformation : kinetics and derivatives. -- Chapter 7 : Motion. -- Chapter 8 : Transformation derivatives. -- Part 4 : Practical considerations. -- Chapter 9 : Observations and parameter recovery. -- Chapter 10 : Useful differentiation relationships. -- Part 5 : Concluding remarks. -- Chapter 11 : Practical observations. -- Part 6 : Appendices. -- A. Useful geometric algebra items. -- B. bivectors and rotation. -- C. Transformation concepts. -- D. Exponential function derivatives. -- Bibliography.
520 _aThis book offers a practical and concise formulation of the geometry and mathematics associated with position and attitude of a rigid body in 3D space. The material is presented as a practical technical synopsis containing useful formulas and expressions presented in context of general descriptions and underlying physical interpretations. The content is structured as a useful working-reference intended for those who are developing algorithms and applications involved with modelling, measuring and/or controlling rigid objects in our physical world.
650 _aDYNAMICS.
650 _aRIGID.
942 _2lcc
_cBK
_n0
999 _c5513
_d5513